New paper in Language, Cognition and Neuroscience: Understanding the role of linguistic distributional knowledge in cognition

A paper on which I am joint-first author, which I previously posted here as a preprint, has just (after a long time!) been published in the journal Language, Cognition and Neuroscience.

Take a look!

It should be open-access, but if for some reason you can't see it properly there, I can give you a copy.

New paper in Cognitive Science: "Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production"

A paper on which I am joint-first author, a preprint of which I mentioned here previously, has just been published in Cognitive Science.

Check it out!

If you don’t have access to Cognitive Science, you can get the paper from me.

New preprint: "Linguistic Distributional Knowledge and Sensorimotor Grounding both Contribute to Semantic Category Production"

My colleagues Briony Banks, Louise Connell and I recently submitted a paper reporting research we've been doing at Lancaster University over the last year.

Needless to say, the Covid-19 lockdowns in the UK have been a substantial impediment to this work, so it's really good to see it finally complete.

A figure taken from the paper preprint. The computational model has two components, "linguistic" and "sensorimotor". The linguistic component is illustrated by colour spreading through a network of connected concepts ("animal", "husbandry", "horse", "cow", etc.). The sensorimotor component is illustrated with bubbles of colour growing and popping, creating new circles as they meet new points in the space ("animal", "cat", "rain", etc.). In the centre, the list of all concepts reached in either component are listed.
Schematic illustration of the computational model operating for an example category.

New preprint: "Understanding the role of linguistic distributional knowledge in cognition"

I have recently submitted a paper based on some work I have been doing at my job at the Embodied Cognition Lab at Lancaster University. In it, we look at a large set of linguistic distributional models commonly used in cognitive psychology, evaluating each on a benchmark behavioural dataset.

Linguistic distributional models are computer models of knowledge, which learn representations of words and their associations from statistical regularities in huge collections of natural language text, such as databases of TV subtitles. The idea is that, just like people, these algorithms can learn something about the meanings of words by only observing how they are used, rather than through direct experience of their referents. To the degree that they do, they can then be used to model the kind of knowledge which people could gain in the same way. These models can be made to perform various tasks which rely on language, or predict how humans will perform these tasks under experimental conditions, and in this way we can evaluate them as models of human semantic memory.

We show, perhaps unsurprisingly*, that different kinds of models are better or worse at capturing different aspects of human semantic processes.

A preprint of the report is available on Psyarxiv.


*unsurprising to you as you read this, perhaps, but actually this is the largest systematic comparison of models as-yet undertaken, and thereby the first to actually effectively weigh the evidence on this question.

New(ish) paper: "Entrainment to the CIECAM02 and CIELAB colour appearance models in the human cortex"

Not so long ago I had a paper published in Vision Research.  It's on some work I did some years ago with my friend and collaborator Andrew Thwaites.  In it we look at the entrainment of magnetoencephalographic activity in early visual cortex to colour information in visual stimulus using two competing computational models of colour.  In other words, when and where people's brainwaves directly track the colour of moving images they were seeing on a screen, using two theories about how colour could be represented in the brain.

The paper is in Elsevier's "open archive", which hopefully means you can read it for free.  If not, hit me up.

I don't talk about my work too much here, but if you're interested you can read more about what I do on my more professional website.

New paper: "Relating dynamic brain states to dynamic machine states: Human and machine solutions to the speech recognition problem"

Hey!

I just had a paper published in PLOS Computational Biology.  It's on some work I did with the Centre for Speech, Language and the Brain at Cambridge University.  In it, we used a machine model of speech recognition to map phonetic sensitivities in human auditory cortex using magnetoencephalography neuroimaging data.

The paper is open-access, so you can read it here.

If you're interested, you can read more about the kind of research I do over at my "professional" website.

MFPS 28

Schedule composition diagram

Here's what I'm doing this week: the 28th annual Mathematical Foundations of Programming Semantics conference.  I am presenting a paper there, "A graphical foundation for schedules", joint work with my PhD supervisors Guy McCusker and John Power.  There's a preliminary version of the paper which will eventually appear in ENTCS.  The talk had slides, though they contained unnecessary illustrative animations which are not there on the pdf.